Search results for "interacting particle systems"

showing 3 items of 3 documents

A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM

2011

We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves…

Interacting particle systemsPhotonlarge numbers limitDimension (graph theory)FOS: Physical sciencesBoundary (topology)01 natural sciences010104 statistics & probabilityInteracting particle systems large numbers limit absorptionFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Absorption (logic)0101 mathematics[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Condensed Matter - Statistical MechanicsPhysicsParticle systemNumerical AnalysisRange (particle radiation)Partial differential equationStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)010102 general mathematicsMathematical analysis[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationProduct measure82C22 82C21 60F05 60K35absorptionMathematics - Probability
researchProduct

Large Number Asymptotics for Two-Component Systems with Self-Consistent Coupling

2014

We shall consider the large number asymptotics of particle models for partial differential equations describing two component mixtures with simplest kind of self-consistent couplings. We shall recall in particular two examples related to different classes of models, the first one having both particle-like components and the second one having only one particle-like component (the other being described as a fluid); for these examples, different techniques on the probabilistic and analytic point of view are to be used to rigorously prove the convergence to a limit of the self-consistent terms in a “mean-field”-like asymptotics. The two models were analysed resp. in Bernardin and Ricci (Kinet R…

Partial differential equationComponent (thermodynamics)Numerical analysisConvergence (routing)Probabilistic logicApplied mathematicsHeat equationLimit (mathematics)PreprintTwo-component systems Interacting particle systems large number limit self--consistent couplingMathematics
researchProduct

From Particle Systems to Partial Differential Equations International Conference, Particle Systems and PDEs VI, VII and VIII, 2017-2019

2021

This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general…

interacting particle systems partial differential equations kinetic theory stochastic analysis modelling modelingSettore MAT/07 - Fisica Matematica
researchProduct